segunda-feira, 8 de agosto de 2011

SUPERÁTOMOS

Do desenvolvimento de novos materiais magnéticos à perspectiva de uma nova tabela periódica em 3 dimensões.

Químicos e físicos se preparem! Vem aí uma nova versão da tabela periódica! Talvez o químico russo Dimitri Mendeleev esteja se retorcendo neste momento da história com a possibilidade do surgimento dessa novidade... A nova tabela de que estamos falando desta vez não é composta apenas de átomos mas também de superátomos. Átomos mais fortes e maiores do que os outros? Não, não... Na realidade, estes superátomos constituem-se de um aglomerado estável ou metaestável de átomos (chamados neste texto de cluster) que podem mimetizar o comportamento químico de átomos elementares.
 
Figura 1. Uma nova visão da tabela periódica em três dimensões com a inclusão dos superátomos que mimetizam o comportamento dos átomos elementares.

A idéia básica dos superátomos fundamenta-se na analogia entre o espectro eletrônico e a valência química dos clusters quando comparado aos dos átomos. Desde 1997, diversos clusters contendo átomos de alumínio como Al13, BAl12, Al14 e entre outros foram descritos como sendo capazes de mimetizar o comportamento químico de halogênios e metais alcalinos-terrosos. Outros exemplos de superátomos são os clusters Li(HF)3Li, VSi16F e um cluster contendo treze átomos de platina, que possui propriedades magnéticas.
 
Figura 2. Um superátomo: Cluster contendo treze átomos de alumínio que mimetiza um átomo de iodo.

Em um estudo mais recente (2009), publicado na revista Nature Chemistry, o professor Shiv N. Khanna e colaboradores realizam cálculos de primeiros princípios para clusters contendo vanádio e metais alcalinos, como sódio e césio. Especialmente em um deles, observaram que o cluster formado por um átomo de vanádio e oito de césio (VCs8) atua como um minúsculo magneto, mimetizando as propriedades magnéticas de um átomo de manganês.  A explicação deste fenômeno pode ser atribuída ao preenchimento do subnível d do vanádio por elétrons do metal alcalino, o que leva em um aumento no momento magnético de três para cinco magnétons de Bohr (mB), característico de um átomo de manganês. Em outras palavras, o átomo de vanádio deixa de ter sua configuração eletrônica original d3 s2, passando a ser d5 s2.
Uma das vantagens da utilização desses superátomos é a possibilidade de modulação de suas estruturas. A combinação direta de dois clusters de VCs8 leva a formação de um novo composto de fórmula molecular V2Cs16, mais estável do que seus precursores. Esta combinação resultou em alterações nas propriedades magnéticas do composto, onde o momento magnético total de spin observado foi de 12mB, ou seja, 2mB maior do que dois clusters isolados. Verificou-se, através de cálculos DFT, que no estado fundamental os átomos de vanádio estão acoplados ferromagneticamente, assim como no dímero Mn2, mostrando que as propriedades miméticas são mantidas mesmo quando os superátomos estão interagindo entre si.
Segundo o professor Khanna, a associação entre propriedades elétricas e magnéticas observadas em superátomo pode trazer um significante desenvolvimento em uma área conhecida como “eletrônica molecular”, onde se estuda o efeito da corrente elétrica sobre uma molécula e está direcionada para fabricação de nanodispositivos. Aproveitando-se das propriedades magnéticas observadas em alguns superátomos, o grupo do professor Khanna já iniciou os trabalhos em outra área emergente da nanotecnologia, chamada de “spintronica molecular”, na qual se pretende a manipulação do momento magnético de spin da molécula visando-se aplicações em dispositivos de armazenamento de informações e processamento de dados.
Certamente, um dos grandes desafios da ciência dos materiais hoje é o desenvolvimento de novos materiais magnéticos. Nesta linha, as pesquisas com os superátomos mostram-se extremamente promissoras para o desenvolvimento de novas tecnologias.

Fonte: SBQrio

domingo, 31 de julho de 2011

PELE ARTIFICIAL FEITA DE NANOFIOS






Cientistas conseguem produzir pele eletrônica sensível a pressão a partir de nanofios semicondutores (ilust.:divulgação)

Um grupo de pesquisadores da Universidade da Califórnia em Berkeley, nos Estados Unidos, conseguiu produzir um material eletrônico sensível à pressão a partir de nanofios semicondutores. A conquista abre caminho para o desenvolvimento de um novo tipo de pele artificial.
“A ideia é fazer com que o material tenha funcionalidades semelhantes à da pele humana, o que implica incorporar a capacidade de tocar e de sentir objetos”, disse Ali Javey, professor de engenharia elétrica e de ciência da computação e líder do estudo, cujos resultados foram publicados no dia 12/09/2010 na revista Nature Materials. O material, denominado de e-skin (“pele eletrônica”) por seus criadores, é o primeiro feito de semicondutores inorgânicos cristalinos.
Produzir uma pele artificial sensível ao toque ajudaria a vencer um grande desafio na robótica: controlar a quantidade de força necessária para segurar e manipular uma ampla gama de objetos.
“Os humanos sabem como segurar um frágil ovo sem quebrá-lo. Se quisermos que um robô faça isso, ou lave as louças, por exemplo, precisamos ter certeza de que ele não quebrará as taças de vinho no processo. Mas também queremos que o mesmo robô seja capaz de segurar com firmeza uma chaleira sem derrubá-la”, disse Javey.
Um objetivo mais distante é usar a e-skin para restaurar o sentido do tato em pacientes que precisam de membros protéticos. Essas novas próteses exigiriam avanços importantes na integração de sensores eletrônicos com o sistema nervoso humano.
Tentativas anteriores de desenvolver pele artificial se basearam em materiais orgânicos, por serem flexíveis e de processamento relativamente simples.
“Mas o problema é que os materiais orgânicos não constituem bons semicondutores, o que implica que dispositivos eletrônicos feitos com eles precisarão frequentemente de altas voltagens para que seus circuitos funcionem”, disse Javey.
Segundo ele, materiais inorgânicos como o silício, por outro lado, têm propriedades elétricas excelentes e podem operar com pouca energia. Também são quimicamente estáveis. “Mas, historicamente, esses materiais têm sido inflexíveis e fáceis de quebrar”, disse.
“Nesse aspecto, trabalhos de vários grupos de pesquisa, inclusive o nosso, têm mostrado recentemente que fitas ou fios minúsculos de materiais inorgânicos podem ser feitos para que sejam altamente flexíveis, isto é, ideais para eletrônicos e sensores de alta performance”, afirmou.
O grupo californiano utilizou uma nova técnica de fabricação. Inicialmente, os cientistas implantaram fios com espessura nanométrica (bilionésimos de metro) em um tambor cilíndrico. Em seguida, o tambor foi rolado em um substrato pegajoso.
O substrato usado foi um filme polimérico, mas os pesquisadores dizem que a técnica funciona com diversos materiais, como outros plásticos, papel ou vidro.
À medida que o tambor rolava, os nanofios eram depositados no substrato de maneira ordenada, formando a base a partir da qual folhas finas e flexíveis de materiais eletrônicos podem ser construídas.
Os pesquisadores imprimiram os nanofios em matrizes quadradas com 18 por 19 pixels, medindo 7 centímetros de cada lado. Cada pixel continha um transistor feito de centenas de nanofios semicondutores. Os transistores foram integrados sob uma borracha sensível a pressão, de modo a se inserir a funcionalidade sensorial.
A matriz precisou de menos de 5 volts de eletricidade para funcionar e manteve seu rendimento após ter sido submetida em testes a mais de 2 mil ciclos de dobras.
Segundo os autores do estudo, a e-skin foi capaz de detectar pressões de 0 a 15 quilopascals, uma variação comparável com a força usada para atividades diárias como digitar em um teclado de computador ou segurar um objeto.
O artigo Nanowire active-matrix circuitry for low-voltage macroscale artificial skin (doi: 10.1038/nmat2835), de Ali Javey e outros, pode ser lido por assinantes da Nature Materials em www.nature.com/naturematerials

quarta-feira, 27 de julho de 2011

PARA ALÉM DA TABELA PERIÓDICA






Grupo internacional, com participação brasileira, consegue pela primeira vez produzir núcleos atômicos de antimatéria "estranha" por meio da colisão de íons de ouro em feixes de alta energia. Estudo foi publicado na Science (Foto: Cooperação Star)


Um grupo internacional de cientistas, com participação brasileira, conseguiu a primeira evidência experimental de que núcleos atômicos compostos de antimatéria "estranha" podem ser produzidos pela colisão de íons de ouro em alta energia.
A capacidade para formar em abundância essas partículas exóticas, segundo os autores, poderá ser fundamental para por à prova aspectos fundamentais da física nuclear, da astrofísica e da cosmologia.
O experimento, realizado pela Colaboração Star  – que reúne 584 cientistas de 54 instituições em 12 países diferentes – foi produzido no Colisor Relativístico de Íons Pesados (RHIC, na sigla em inglês), localizado nos Estados Unidos. Os resultados foram publicados no dia 05/03/2010 no site da revista Science.
Os coautores brasileiros são Alejandro Szanto Toledo, Alexandre Suaide e Marcelo Munhoz – todos eles professores do Departamento de Física Nuclear do Instituto de Física (IF) da Universidade de São Paulo (USP) –, Jun Takahashi, professor do Instituto de Física Gleb Wataghin (IFGW) da Universidade Estadual de Campinas (Unicamp) e seus orientandos de doutorado Rafael Derradi de Souza e Geraldo Vasconcelos.
De acordo com Toledo, que é diretor do IF-USP desde 2006, a participação dos cientistas paulistas na colaboração contou com diversos auxílios da FAPESP. Toledo coordena atualmente o Projeto Temático “Reações nucleares nos regimes relativístico e astrofísico”, apoiado pela Fundação. Takahashi, atualmente na Unicamp, foi seu orientando de pós-doutorado na USP, com Bolsa da FAPESP.
Segundo Toledo, o artigo descreveu a primeira observação da formação de um anti-hipernúcleo. De acordo com ele, uma colisão de íons pesados em alta energia, como a que foi produzida no RHIC, gera uma grande quantidade de partículas. Em tese, quando a energia é superior a duas vezes a massa de determinado hádron, antipartículas desse hádron podem ser geradas, o que ocorre quando a transição de fase é atingida
“Essas antipartículas são submetidas à coalescência – um processo análogo à condensação – e algumas delas podem agregar, por exemplo, dois antinêutrons e um antipróton, formando um antitrítio – isto é, um núcleo de antimatéria correspondente ao do átomo de trítio – o isótopo do hidrogênio que possui dois nêutrons e um próton”, disse Toledo à Agência FAPESP.
O experimento, segundo o professor, formou hádrons – partículas formadas por quarks, como os prótons e nêutrons – que possuem um chamado quark estranho, formando o chamado hipernúcleo. No modelo padrão da física de partículas, o quark estranho é aquele que possui o novo número quântico conhecido como “estranheza”.
“Esse hipernúcleo formado, que é um antiestranho, é feito de antimatéria. Essa é a primeira vez em que se conseguiu uma evidência experimental de um anti-hipernúcleo. Ou seja, obtivemos um núcleo que está fora do espaço biparamétrico da tabela periódica. Trata-se, portanto, de antimatéria estranha”, explicou Toledo.
Segundo ele, já se havia obtido antiprótons e antielétrons – ou pósitrons. Mas é a primeira vez que se obtém um anti-hipernúcleo, que é algo bem mais complexo e mais raro. “Estamos felizes por termos um grupo de São Paulo participando do trabalho, porque trata-se de fato de uma descoberta”, destacou.
Toledo explicou que a reação foi produzida nos mais altos níveis de energia atingidos pelo RHIC. Essa região de alta densidade de energia foi formada pela colisão de dois núcleos de ouro a 200 gigaelétron-volts (GeV).
“Como se trata de um anel de colisão, a energia no centro de massa é de 200 GeV: uma quantidade de energia suficientemente grande para derreter a matéria nuclear e provocar uma transição de fase. Com isso, conseguimos passar da matéria hadrônica para a matéria conhecida como quark-glúon plasma”, explicou.
Eixo da estranheza
Esse novo estado da matéria nuclear originado da transição de fase, de acordo com Toledo, também foi observado pela primeira vez de forma conclusiva no RHIC. É esse estado que possibilitou a formação da coalescência, produzindo os anti-hipernúcleos.
“Para se ter uma ideia da eficiência do processo, basta dizer que, em 100 milhões de colisões, 70 foram observadas. Para reconhecer essas 70 colisões, foi preciso fazer um trabalho de identificação dessas partículas e de seus descendentes em um meio superpovoado com todas as partículas criadas pela colisão. Algo como encontrar uma agulha em um palheiro. O filtro necessário para detectar essas partículas teve que ser desenhado com extrema precisão”, disse.
A partir desses resultados, segundo Toledo, um dos caminhos possíveis consiste em prosseguir com os experimentos até a construção de uma nova tabela periódica. A próxima meta planejada, de acordo com ele, é a criação de um anti-hélio: uma partícula alfa de antimatéria.
“Quanto mais complexo é o antinúcleo, menor a probabilidade de coalescência. O anti-trítio é composto de três partículas. Mas se quisermos um anti-hélio, vamos precisar de quatro partículas na mesma região do espaço: dois antiprótons e dois antinêutrons. Não será fácil, mas a Colaboração Star irá enveredar por essa direção”, afirmou.
Outro caminho para as investigações, segundo Toledo, consiste em colocar à prova as leis fundamentais da física de partículas. “Por exemplo, sabemos que a tabela periódica até recentemente possuía dois eixos: o número de prótons e o número de nêutrons. Se estendermos a tabela, podemos encontrar também o número de antiprótons e de antinêutrons no mesmo plano. Com isso, poderíamos criar um terceiro eixo na tabela, que nunca foi observado e é perpendicular aos outros dois: o eixo da estranheza”

go Observation of an Antimatter Hypernucleus (DOI: 10.1126/science.1183980) , da Colaboração Star, pode ser lido por assinantes da Science em www.sciencexpress.org

Fonte: Agência FAPESP